Synchronization of chaotic neural networks via output or state coupling
نویسندگان
چکیده
We consider the problem of global exponential synchronization between two identical chaotic neural networks that are linearly and unidirectionally coupled. We formulate a general framework for the synchronization problem in which one chaotic neural network, working as the driving system (or master), sends its output or state values to the other, which serves as the response system (or slave). We use Lyapunov functions to establish general theoretical conditions for designing the coupling matrix. Neither symmetry nor negative (positive) definiteness of the coupling matrix are required; under less restrictive conditions, the two coupled chaotic neural networks can achieve global exponential synchronization regardless of their initial states. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملSynchronization for Complex Dynamic Networks with State and Coupling Time-Delays
This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...
متن کاملExponential synchronization of chaotic neural networks with mixed delays
In this paper, we deal with the exponential synchronization problem for a class of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback. The mixed delays in this paper include time-varying delays and unbounded distributed delays. By using a Lyapunov–Krasovski˘ ı functional, a drive–response concept and a linear matrix inequality (LMI) approach,...
متن کاملبررسی پایداری حالت همگام در شبکهای از نگاشتهای آشوبناک با روش سنجه ماتریسی
Stability of synchronous state is a fundamental problem in synchronization. We study Matrix Measure as an approach for investigating of stability of synchronous states of chaotic maps on complex networks. Matrix Measure is a measure which depends on network structure. Using this measure and comparing with synchronization threshold which depends on the function of the map, show us how the synchr...
متن کاملRobust synchronization of uncertain chaotic neural networks with randomly occurring uncertainties and non-fragile output coupling delayed feedback controllers
This paper deals with the synchronization control problem for the uncertain chaotic neural networks with randomly occurring uncertainties and randomly occurring control gain fluctuations. By introducing an improved Lyapunov–Krasovskii functional and employing reciprocally convex approach, a delaydependent non-fragile output feedback controller is designed to achieve synchronization with the hel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006